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Abstract

A number of different dynamics models are considered for fitting 13C and 2H side chain methyl relaxation rates.
It is shown that in cases where nanosecond time scale dynamics are present the extended Lipari–Szabo model
which is explicitly parameterized to include the effects of slow motions can produce wide distributions of fitting
parameters even in cases where the errors are relatively small and large numbers of relaxation rates are considered.
In contrast, fits of 15N backbone dynamics using this model are far more robust. The origin of this difference is
analyzed and can be explained by the different functional forms of the spectral density in these two cases. The
utility of a number of models for the analysis of methyl side chain dynamics is presented.

Introduction

Much of structural biology is predicated on the de-
termination of static three-dimensional structures of
macromolecules and there is currently tremendous in-
terest in generating pictures of as many proteins as
possible (Edwards et al., 2000). The structures that
have been produced have, in many cases, had a sig-
nificant impact on our understanding of function and
in the design of important pharmaceuticals. However,
it is well recognized that proteins are not static enti-
ties and that dynamics are often critical for processes
such as enzyme catalysis, molecular recognition, and
ligand binding, for example (Brooks et al., 1988; Fer-
sht, 1985). Thus, a complete understanding of protein
function can only be achieved through a description
of how structure changes with time and the relation
between dynamics and function continues to be the
focus of many biophysical studies.

Nuclear magnetic resonance (NMR) spectroscopy
is a powerful technique for the study of protein dy-
namics (Ishima and Torchia, 2000; Kay, 1998; Palmer
et al., 1996). Over the past decade a wide array of
methods have been developed for probing protein mo-

tions on a site-specific basis spanning a broad range
of time scales. The most frequently employed exper-
iments measure backbone 15N spin relaxation rates,
providing information about the motions of amide
15N-1HN bond vectors. More recently relaxation of
13Cα (Engelke and Rüterjans, 1995; Yamazaki et al.,
1994) and 13CO (Cordier et al., 1996; Dayie and Wag-
ner, 1997; Zeng et al., 1996) spins have been used as
additional probes of backbone dynamics. The dynamic
picture of a protein, however, cannot be completed
without information about motion of side chains and
several significant advancements have been made in
the past few years in this regard. These include the
development of both biosynthetic approaches to pro-
duce proteins with labeling patterns that are amenable
to study and the design and optimization of new
NMR experiments. For example, 13C labeling strate-
gies have been devised in which 13C is enriched at
alternate positions along a side chain (LeMaster and
Kushlan, 1996), eliminating 13C-13C couplings which
complicate measurement of 13C spin relaxation rates
(Lee et al., 1997; LeMaster and Kushlan, 1996). Other
labeling strategies have focused on the production of
13CHD2 methyls for subsequent analysis by 13C re-
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laxation (Ishima et al., 1999). Our laboratory has
developed an approach for studying side chain dynam-
ics in which 2H spin relaxation rates are measured at
methylene (13CHD) and methyl positions (13CH2D)
in proteins that are labeled uniformly with 13C and
fractionally with 2H (Muhandiram et al., 1995; Yang
et al., 1998). In principle, five relaxation rates can be
obtained per site (Millet et al., 2002), providing an
opportunity to characterize the dynamics in a detailed
manner. The methodology has also been extended to
studies of side chain dynamics of proteins in unfolded
states (Choy and Kay, 2003; Muhandiram et al., 1997).

Once relaxation rates have been measured they can
be interpreted using the Lipari-Szabo model (Lipari
and Szabo, 1982a, b) to obtain, in the simplest case, an
order parameter and a correlation time characterizing
the amplitude and time scale of motions at a particular
site, respectively. Clore et al. (1990) showed in the
context of 15N spin relaxation data that such a model
could be readily extended to account for internal dy-
namics on a number of different time scales (extended
Lipari–Szabo model) and this model is in widespread
use today in the analysis of both backbone and side
chain relaxation data. It is not clear however that a
model that is well suited for fitting relaxation of a par-
ticular probe (say 15N) in the protein backbone would
be equally appropriate for the analysis of spin relax-
ation data recorded on a methyl 13C or 2H nucleus.
For example, in a recent study of methyl containing
side chain dynamics in protein L we found that fitting
2H spin relaxation data derived from 13CH2D methyls
to an extended Lipari–Szabo model used successfully
in the analysis of 15N relaxation rates was unstable
in the sense that often wide ranges of dynamics pa-
rameters were obtained from Monte-Carlo-type error
analyses (Millet et al., 2002; Skrynnikov et al., 2002).
Excellent fits of the methyl data could be obtained,
however, using simpler spectral density functions (see
below). This has prompted us to investigate the utility
of a number of different models for fitting side chain
methyl dynamics data (either 2H or 13C) and, fur-
ther, to explore what the inherent differences between
side chain methyl and backbone amide relaxation data
might be that lead to the suitability of a particular
model in one case but not in another.

Results and discussion

As described above, the Lipari–Szabo model-free
analysis is the most widely used approach for the

translation of relaxation data to site-specific motional
parameters characterizing fast internal dynamics in
macromolecules (Lipari and Szabo, 1982a, b). The
original approach assumes that the overall molecular
tumbling is isotropic and independent of internal mo-
tions and that the internal motions can be described
by a single exponential process. Under these assump-
tions, the correlation function adopts a two-exponent
form and the corresponding spectral density (referred
to in what follows as LS-2) is expressed as the sum of
two Lorentzian terms:

J (ω) = S2τr

1 + (ωτr )2 + (1 − S2)τ

1 + (ωτ)2 ,

1
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+ 1

τf

,
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where S is an order parameter describing the am-
plitude of the internal motions with correlation time
τf and τr is the overall molecular tumbling time
of the protein. When the dynamics are more com-
plex with both fast (ps) and slower (perhaps ns)
time scale motions, such as might be the case for a
methyl group attached to a side chain, the correla-
tion function can be approximated by c(t) = {αS2
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is obtained, where the slower internal motions are pa-
rameterized by Ss and τs (Skrynnikov et al., 2002).
In Equation 2 the value of α is set to 1 to describe
the relaxation of backbone 15N or 13C spins and to
1/9 for methyl 13C or 2H spins (assuming that the
methyl group adopts ideal tetrahedral geometry). As
with the simple LS-2 model (Equation 1) indepen-
dence of overall and internal dynamics are assumed, as
is independence of the fast and slow time scale internal
motions. In the derivation of Equation 2 we have made
no attempt to separate the contributions from rotation
about the assumed methyl three-fold axis and fast (ps)
time scale motions of this axis, since both processes
occur with similar time constants. Note that in the limit
where τf � τs Equation 2 simplifies to the expression
given in Clore et al. (1990). It is also of interest to
note that in the infrequent case that methyl rotation is
slow and on the same time scale as the slow internal
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Figure 1. Plot of J(ω), using the spectral density form given by Equation 1, vs. frequency (dashed line). S2, τr and τf are set to 0.8, 10 ns and
100 ps, respectively. The symbols (�), (�) and (×) are used to indicate the frequencies at which the spectral density is evaluated in expressions
for 15N, 2H and 13C relaxation at 14.1 T (600 MHz 1H frequency).

dynamics Equation 2 is still valid with {τf , Sf } and
{τs, Ss} interchanged.

The amount of dynamics information that can be
extracted from any relaxation experiment is limited by
sampling of only a small number of discrete values of
the spectral density function. The relaxation rates of
different spins (15N, 13C, 2H etc.), probe the spectral
density function at different frequencies and thus the
sensitivity of measurements to dynamic processes will
vary depending on what nucleus is studied (Lee et al.,
1999). Figure 1 shows the frequencies at which the
spectral density function is sampled in 15N (red), 13C
(blue) and 2H (green) spin relaxation measurements.
The commonly employed 15N R1, R2 and steady state
1H-15N NOE measurements sample a wide range of
frequencies extending from 0 to ωH−ωN. On the other
hand, 2H spin relaxation rates are dominated by the
quadrupolar relaxation mechanism, which samples the
spectral density function over a relatively more narrow
range (0 − 2ωD). Moreover, in the case of side chain
methyl relaxation rates the spectral density function
includes a factor of 1/9 which accounts for the methyl
three-fold rotation (see Equation 2) that is absent in the
analysis of backbone 15N data. Thus, spin-dependent
differences in both the functional form and the fre-

quency sampling of the spectral density suggest that
a spectral density function that performs well in the
analysis of 15N backbone data may not be robust in
applications involving side chain dynamics.

By means of example we have simulated methyl
13C R1, R2 and steady state 1H-13C NOE relaxation
data recorded at 400, 500, 600 and 800 MHz (1H)
frequencies using the spectral density function given
in Equation 2 (α = 1/9) with {S2

f , τf , S2
s , τs} =

{0.8, 50 ps, 0.5, 1.0 ns} and τr = 6 ns. Gaussian noise
with a standard deviation of 3% of the relaxation pa-
rameter in question (R1, R2) and 5% for the NOE was
added to each of the relaxation parameters and data
from all fields (400–800 MHz) were fit together using
Equation 2, corresponding to the case where 12 pieces
of relaxation data are obtained per methyl. In order to
ensure that the global minimum was selected we have
carried out a four-dimensional grid search in which S2

f

and S2
s were varied from 0.0 to 1.0 in steps of 0.02, τf

was varied from 40 to 100 ps with a grid size of 5 ps
and τs was incremented from 50 ps to 6 ns in steps
of 20 ps. Once a minimum was obtained the resulting
parameter set was used as input to a simplex mini-
mization procedure (Press et al., 1988). The process
was repeated 1000 times and the distribution of fitting
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Figure 2. Histograms of S2
f
, S2

s , τs and τf derived from fits of 13C methyl (first column), 2H methyl (second column) and 15N backbone (third
column) spin relaxation data. Relaxation parameters were simulated using the LS-4 spectral density function with α = 1 and 1/9 for backbone
and methyl data respectively and with input dynamics parameters of {S2

f
, τf , S2

s , τs } = {0.8, 50 ps, 0.5, 1.0 ns} and τr = 6 ns. Errors were
added to the relaxation data and the rates subsequently fit using the same LS-4 model, as described in Results and discussion, to give the
distributions shown. All values of τs obtained from fits that are greater than 8 ns were included in the final histogram bar (between 7–8 ns) in
the case of the 13C and 2H relaxation data. The methyl 13C relaxation rates were simulated assuming a 13CHD2 methyl, with auto-correlated
dipolar contributions from both 1H-13C and 2H-13C interactions included, as well as contributions from chemical shift anisotropy, as described
in Ishima and Torchia (Ishima et al., 2001). A value of 1.135 Å was used for the 1H-13C bond length along with an assumed axially symmetric
chemical shift tensor with �σ = 25 ppm. Methyl 2H rates were simulated assuming a 13CH2D methyl, with equations describing the relaxation
of the 2H spin given in Millet et al. (2002). Backbone 15N spin relaxation rates were calculated as described in Farrow et al. (1994) with
�σ = −170 ppm and rHN = 1.02 Å.

parameters {S2
f , τf , S2

s , τs} obtained in this manner is
illustrated in the first column of Figure 2, indicating
that quite a wide range of values can be obtained. A
similar analysis was repeated for a set of simulated
methyl 2H spin relaxation rates including RDz (lon-
gitudinal), RD+ (in-phase transverse), RD+Dz+DzD+
(anti-phase transverse), R3D2

z−2 (quadrupolar order)
and RD2+ (double quantum) using the dynamics para-

meters and four spectrometer fields listed above. All
rates were assumed to have errors of 3% and in this
case 20 rates (4 fields) were fit simultaneously. As with
the 13C data, a wide distribution of dynamics parame-
ters were extracted (Figure 2, second column), despite
the fact that the same model that was used to generate
the data was also used to fit it. A further set of simu-
lations with different values of input order parameters



329

and correlation times shows that the output parameter
distribution widths are, in most cases, quite similar and
are significantly wider than those observed from fits of
15N data (see below).

In a final set of simulations, backbone 15N spin
relaxation data sets comprising R1 (with 3% error),
R2 (3% error) and NOE (5% error) values at 400,
500, 600 and 800 MHz were calculated using the
spectral density function of Equation 2 with α set to
1. The distributions of motional parameters obtained
from fits of the relaxation data are shown in the third
column of Figure 2. In contrast to what is observed
for fits of methyl relaxation rates, narrow ranges of
{S2

f , S2
s , τs} are obtained, although for τf the width of

the distribution is somewhat larger.
The extra factor of 1/9 in expressions for J (ω)

in the case of methyl (but not 15N) relaxation scales
down terms which depend on {S2

f , S2
s , τs} (see the

first two terms in Equation 2). This can be under-
stood by noting that for a broad range of dynamics
parameters the sum of the last two terms of J (ω) in
Equation 2 is of the same order as the sum of the
first two for non-zero values of ωD that are impor-
tant in the relaxation expressions. For example, for
ωD/2π = 77 MHz (1H frequency of 500 MHz) and
for {S2

f , τf , S2
s , τs} = {0.8, 50 ps, 0.5, 1.0 ns} and

τr = 6 ns as above, the sum of the first (second) two
terms in Equation 2 is 61.0 ps (44.1 ps). Note that
in the limit that τf � τs, τr the sum of the second
pair of terms is to excellent approximation given by
(1 − 1

9S2
f )τf /(1 + (ωτf )2), which is independent of

S2
s , τs and to good order also S2

f . The effect of the
second pair of terms in Equation 2, therefore, ren-
ders the J (ω) surface less sensitive to {S2

f , S2
s , τs}

and conversely their extracted values are significantly
more sensitive to errors in the relaxation data than
is the case for 15N measurements. This accounts for
the differences in the widths of the distributions of
S2

f , S2
s , τs obtained in fits of methyl and 15N relaxation

data, Figure 2. That the errors in extracted values of
τf are in general smaller in the case of methyl data
can be understood by noting that the last two terms in
Equation 2 (which are the only ones sensitive to τf )
contribute significantly more to J (ω) in the case of
methyl relaxation (i.e., when the other terms are atten-
uated by 1/9) than for 15N spin relaxation where the
factor of 1/9 is absent.

Finally, in fitting either 13C or 2H data average χ2

values (χ2 = 1/N�i=1,N (Calci − Fiti )2/σ2
i , where

N is the number of relaxation rates/NOEs fit, Calc

are the calculated rates/NOEs including errors, and
Fit are the best fit rates/NOEs) of 0.68 ± 0.35 (13C)
and 0.81 ± 0.28 (2H) are obtained (the ‘errors’ corre-
spond to the standard deviation of χ2 from the 1000
fits), with similar χ2 values obtained in fits of the 15N
rates (0.67 ± 0.34). This indicates that the spread in
extracted parameters noted for methyl data is not due
to lack of convergence during minimization of the er-
ror function, but reflects the shallowness of the error
surface itself.

In all of our studies of methyl side chain dynamics
as probed by 2H relaxation we have found that in cases
where the simple Lipari–Szabo spectral density model
does not fit the relaxation data (Equation 1 with S2

replaced by (1/9)S2
f ) a slightly more complex model,

LS-3, of the form,

J (ω) = (1/9)S2
f τeff

c

1 + (ωτeff
c )2 + (1 − (1/9)S2

f )τ

1 + (ωτ)2 ,

1

τ
= 1

τeff
c

+ 1

τf

(3)

does fit the data well (Millet et al., 2002; Skrynnikov
et al., 2002). In Equation 3 τeff

c is a parameter that
is obtained on a per-residue basis and represents the
combined effects of slow local dynamics and overall
tumbling. In a previous study we have also estab-
lished that spectral density functions computed from
a 50 ns molecular dynamics trajectory of an SH3 do-
main were as well fit by Equation 3 as by Equation 2
in cases where ns time scale dynamics were present
(Skrynnikov et al., 2002). The results from both the
experimental and computer generated data reflect the
fact that the relaxation data are sensitive to the spectral
density function evaluated at only a few frequencies
(even in cases where large numbers of spectrometer
fields are used). Fits of relaxation data effectively de-
rive, therefore, a plateau value and time constant for
the correlation function due to fast time scale motions
along with a correlation time describing the decay
from slower motions, which includes both internal and
overall dynamics.

In order to illustrate the utility of the LS-3 model
for fitting methyl dynamics data that involve motion
on a number of time scales we have simulated error-
free 13C and 2H relaxation parameters using the LS-4
form of J (ω)(α = 1/9) at spectrometer fields of 400,
500, 600 and 800 MHz, as above, as a function of
S2

s , τs with S2
f = 0.8 and τf = 50 ps. The rates

were subsequently fit to a model of dynamics in which
J (ω) is given by Equation 3 (LS-3), to obtain the LS-
3 fitting parameters S2

f , τf , τeff
c . Figure 3 illustrates



330

Figure 3. Values of S2
f (a), τeff

c (b) and τf (c) extracted from fits of simulated 13C relaxation parameters (T1, T2 and NOE, no error)

of a methyl 13CHD2 group as a function of input values S2
s and τs . Relaxation parameters were calculated using the LS-4 model with

S2
f

= 0.80, τf = 50 ps, τr = 6 ns and τs , S
2
s values indicated along the x and y axes respectively, and fit using the LS-3 model. (d) E

value obtained in the fits [E2 = 1/N�i=1,N (Calci − Fiti )2/Calc2
i
, where N is the number of relaxation rates/NOEs fit and the Calc (Fit)

rates/NOEs are those obtained using the LS-4 (LS-3) model].

results obtained from fits of the simulated 13C relax-
ation data along with an error parameter, E(E2 =
1/N�i=1,N (Calci − Fiti )2/Calc2

i ), showing the good-
ness of fit, as a function of the values of τs and S2

s used
in the simulations. It is clear that for τs values less
than about 1 ns the extracted values of S2

f are smaller
than the values input in the LS-4 model (Figure 3a).
As τs becomes small, ‘fast’ and ‘slow’ internal mo-
tions become inseparable and the order parameter that
is extracted from the LS-3 model approaches S2

f ×S2
s .

Hence the deviations between S2
f values obtained from

fits using the LS-3 form of the spectral density func-
tion and input values become large. In contrast, in the
limit that S2

s → 0, 1 or as τs becomes on the order
of τr (or larger) the LS-3 and LS-4 models are es-
sentially indistinguishable and S2

f values extracted are
in good agreement with those that are input. Values
of the correlation time, τeff

c , are affected by internal
dynamics and are therefore always smaller than τr ,
Figure 3b. Inspection of Equation 2 shows that in the

limit that S2
s → 0, 1/τeff

c → 1/τr + 1/τs , while
for S2

s → 1, 1/τeff
c → 1/τr . The simulations es-

tablish further that the extracted value of τf is quite
insensitive to the details of the dynamics model, Fig-
ure 3c. Finally, Figure 3d shows that good fits of the
relaxation data (generated using the LS-4 model) are
obtained (LS-3) with E values that are under 0.025.

Figure 4 shows the results from the corresponding
analysis using simulated 2H methyl spin relaxation
data. In general, the extracted values of S2

f , τf and

τeff
c depend in a similar way on input τs and S2

s for
both 13C and 2H relaxation data. As described above,
values of S2

f obtained using the LS-3 model converge
to the input values as τs → τr . However, the con-
vergence occurs more rapidly in the case of 13C data
(compare Figures 3a, 4a) since 13C relaxation depends
on spectral density terms evaluated at higher frequen-
cies than 2H (Figure 1). These high frequency spectral
density terms are particularly sensitive to fast time
scale dynamics (Lee et al., 1999) and therefore help
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Figure 4. Values of S2
f

(a), τeff
c (b), τf (c), and goodness of fit parameter, E, extracted from LS-3 fits of simulated 2H relaxation rates (RDz ,

RD+ , RD+Dz+DzD+ , R3D2
z −2 and RD2+

, no error) of a methyl 13CH2D group generated using the LS-4 model (S2
f

= 0.80, τf = 50 ps and

τr = 6 ns) as a function of input values S2
s and τs (see text for details).

Figure 5. Comparison of the LS-4 spectral density functions (solid black lines) used to generate 13C (a) and 2H (b) methyl relaxation rates
({S2

f , τf , S2
s , τs} = {0.8, 50 ps, 0.5, 1.0 ns} and τr = 6 ns) with the LS-3 spectral density (dashed red line) that best fits the data. The black

circles indicate the values of the LS-4 spectral density function that contribute to the spin relaxation parameters obtained in measurements
performed at 400, 500, 600 and 800 MHz, see text.
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force convergence to the correct value of S2
f . Figure 5

illustrates this clearly, with LS-4 spectral density func-
tions (black solid lines) calculated using {0.8, 50 ps,
0.5, 1 ns} for {S2

f , τf , S2
s , τs} and τr = 6 ns. The

black circles correspond to those values of the spectral
density function that contribute to spin relaxation pa-
rameters obtained in measurements performed at 400,
500, 600 and 800 MHz. The best fit LS-3 spectral
density functions (dashed red lines) are shown. It is
quite clear that the tail of the spectral density function
is better fit by the LS-3 model in the case of 13C data,
which is due to the fact that there is data in this region
to be fit in the first place.

As a final comparison of the LS-3 and -4 mod-
els for the analysis of methyl relaxation data we
return to the case highlighted above where 13C
and 2H relaxation rates have been calculated using
{S2

f , τf , S2
s , τs} = {0.8, 50 ps, 0.5, 1 ns} and τr =

6 ns. One thousand data sets have been generated with
small errors added to the rates (3%) and NOE values
(5%) (see above). F-test statistical analyses showed
that the LS-4 model fit the rates better than the LS-
3 approach at the 95% confidence level for less than
8% of the data sets. That so few trials were better fit
using the LS-4 form of the spectral density is quite re-
markable given that the data was generated using this
model in the first place! Notably, all cases involving
fitting of 15N data using the LS-4 model were superior
to those obtained with the LS-3 form of J (ω) (95%
confidence level). Further simulations with different
input dynamics parameters have established that the
results obtained for the specific case described above
are quite general.

In summary, the present study suggests that the
LS-4 model is appropriate for the analysis of 15N spin
relaxation data (in cases where ns time scale local mo-
tions are present) and that robust dynamics parameters
can be extracted given the level of experimental errors
that are currently reported in most studies. In contrast,
in many cases fits of side chain relaxation rates to
the LS-4 model produce significantly wider distribu-
tions of motional parameters than might be anticipated
on the basis of the errors in the input data, even in
cases where extensive data sets are used. This has been
observed through simulations reported here, even for
small errors, and in the case of applications to experi-
mental data, described previously (Millet et al., 2002;
Skrynnikov et al., 2002). The origin of the differences
between the distributions in dynamics parameters ob-
tained in studies involving backbone and side chain
methyl relaxation has been explored. In cases where

the LS-2 model fails, the LS-3 spectral density func-
tion provides fits of the relaxation data that, in general,
reproduce the data as well as the LS-4 model, and the
extracted parameters are significantly more stable to
error.

Finally, it is important to emphasize that although
we have assumed in the above analysis that the side
chain dynamics are described by the LS-4 model, it
is likely that a correct description is in fact more
complex; the LS-4 model is, however, the simplest
that considers dynamics on both fast and slow time
scales. In reality, in cases where ns time scale mo-
tions are present, the values of correlation times and
order parameters extracted from fits using any model
are likely to depend in complex ways on the actual
dynamics parameters. Our studies of side chain dy-
namics in Protein L (Millet et al., 2002; Skrynnikov
et al., 2002), the N-terminal SH3 domain of drk (Millet
et al., 2002; Skrynnikov et al., 2002) and the fyn SH3
domain (T. Mittermaier, in preparation) suggest that
10–20% of the residues have contributions from ns
motions and the relaxation data in these cases cannot
be fit using the LS-2 model. For these residues a more
complete description will have to await the develop-
ment of additional experiments, allowing the spectral
density function to be probed at an increased number
of frequencies.
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